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Synopsis 

Intrinsic viscosities of polymers are most often estimated using the Huggins equation, which relates 
the quotient ~s,/c to intrinsic viscosity and concentration c. I t  is shown that when this method is 
used, the error structure is distorted by the presence of concentration in the quotient. The result 
is that when dilution series experiments are analyzed, the estimates are ordinarily poorer the more 
dilutions are made. A rearrangement of the Huggins equation is introduced which allows precise 
estimation from any experiment. It is also shown that dilution series experiments with more than 
three different concentrations including that of the pure solvent are inefficient by any method of 
analysis, and convenient experiments which may be considered practical optima are described. When 
they are used the conventional analysis is restored to full efficiency. Design and analysis of exper- 
iments where there is important uncertainty in polymer concentration are also studied. 

INTRODUCTION 

Many physical and technical properties of a polymer of given chemical com- 
position depend strongly on its molecular mass distribution, and it often suffices 
to characterize this distribution by an average molecular mass. One average 
mass which is frequently used is the viscosity average in a particular solvent. It 
is easily obtained from viscosity measurements on dilute solutions by applying 
the Mark-Houwink-Sakurada equation, which relates the viscosity-average 
molecular mass to intrinsic viscosity [q]. Because of this intrinsic viscosity 
measurements are widely made on a daily basis in industry, thus justifying a 
study of their efficiency. 

In the late thirties it was customary' to extrapolate a plot of specific viscosity 
divided by concentration (qsp/c) versus concentration to find the value of 
lim(qsp/c), which is the definition2 of [q]. This limit is variously referred to as 
the intrinsic viscosity, the limiting viscosity number, or the Staudinger index.3 
In 1941 Schulz and Blaschkel obtained values of [q] by extrapolatiod of qsp/c 
versus qsp to qsp = 0, presumably because it was found empirically that their data 
fitted a straight line better in this type of plot than in the conventional plot. 

If qsp/c is linear in qsp, it follows that 

V s p l C  = [771 + K T S ,  (1) 

where K is a constant. Later, Huggins4 derived this equation by hydrodynamic 
treatment of a model for a randomly kinked polymer chain consisting of a string 
of submolecules. His derivation involved an empirical factor in Stokes' relation 
between viscosity and the frictional force per submolecule which arises from its 
flow through the solution. The equation can be written in series form: 
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The familiar Huggins equation, shown below, results from truncating the 

(3) 
The constant k H  is called the Huggins constant. Thus, the plot of q& versus 
c has been given some theoretical underpinning. It is still used in the conven- 
tional method of obtaining intrinsic viscosity values. For stiff polymers the 
Schulz-Blaschke plot is occasionally used. 

Many other relations between viscosity of polymer solutions and concentration 
have been p r o p ~ s e d . ~ - ~  One often still referred to is the empirical relation of 
Kraemer7: 

summation in eq. (2) after the term linear in c: 

q s p / c  = [TI + k H  [qI2c 

(In V r ) / c  = [TI kK[%'12C (4) 
where qr is the relative viscosity and k K  is a constant. When viscosity data are 
available at  only a few concentrations, eqs. (3) and (4) are often used together. 
Both are linear in c and have the same intercept. This facilitates graphic esti- 
mation of [q], particularly since k H  is always positive and k K  is nearly always 
negative. 

These equations and other, more complicated relations have been carefully 
analyzed in the literature. Improved methods of rectilinear extrapolation have 
been devised to obtain estimates of [q] (see the review by Sakai5 and References 
8-13). If accurate values of [q] are required, it must be kept in mind that the 
Huggins relation, even in its nontruncated form, eq. (2), is based on a simple 
model and contains a number of assumptions. Experiments over a wider range 
of concentration than usually employed in estimating [q] have shown that eqs. 
(1) and (2) are usually inadequate outside of a limited concentration range. 
Equation (2) is then replaced by a similar one in which constants k ,  are substi- 
tuted for k". If sufficient data are available, it is then possible with the aid of 
a computer to apply nonlinear regression analysis and thus obtain estimates of 
[77].13J4 These new estimates can be considered more accurate, not only because 
more adjustable parameters are used but because they are consistent with the- 
ories more detailed than the simple one underlying the Huggins equation.13J5 

One important factor which to our knowledge has hitherto received no at- 
tention is that, when qsp or In qsp as in eq. (3) or (4) is divided by the concentra- 
tion, the error in the quotient caused by error in measuring viscosity is magnified 
at  low concentrations. This effect is most pronounced when concentrations are 
proportional to 1,1/2,1/3,1/4, . . ., as when solutions are made by diluting a single 
initial one with successive aliquots of solvent. 

As the first objective of this paper, we show that when eq. (3) is used in the 
conventional way to estimate [q] from such series with more than two dilutions, 
the effect is ordinarily so great that expending work in measuring viscosities of 
more dilute solutions actually results in poorer estimates of [q]. We also show 
how eqs. (3) and (4) may be rearranged so that the error structure is improved. 
We shall see that when the revised equations are used for estimating [q], diligence 
in preparing solutions and measuring their viscosities is rewarded with better 
estimates of [q]. We further show how to design experiments so that the esti- 
mated intrinsic viscosity obtained by analyzing their results will be as close to 
the truth as possible. We find an interesting consequence of optimal design to 
be that eq. (3) may be used directly to analyze the results of optimally designed 
experiments with no loss in efficiency. 
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As the final objective of this paper we show the effect of errors in the mea- 
surement of concentration and how to deal with them in designing and analyzing 
experiments. 

Equations (3) and (4), the Huggins and Kraemer equations, give nearly the 
same estimates of [q] when the errors are reasonably small. Since however the 
Kraemer equation is less convenient to use, we confine ourselves to the statistical 
aspects of the estimation of [q] using the Huggins equation. We mainly consider 
experiments where only a few viscosity measurements are made because of re- 
strictions imposed by the use of commercial Ubbelohde viscometers. It will be 
assumed that viscosity is proportional to efflux time, that the kinetic energy 
correction and variations in temperature are negligible, and that there is no ad- 
sorption of polymer on the capillary wall. 

STATISTICAL ANALYSIS 

Apart from the assumptions mentioned above, others have been made and 
will be discussed at  the appropriate times in the following statistical analysis. 
We assume that errors may be ranked in order of decreasing importance as fol- 
lows: 

1. Errors in measurement of the efflux time of the polymer solution, the largest 
contributors to which are variations in response time of the observer and varia- 
tions in temperature. 

2. Errors in measurement of the amount of polymer present in the solutions. 
These result principally from errors in weighing or analysis. 

3. Errors in the volume of solution. These arise from variations in the quantity 
of solvent used in making up the original solution or in diluting it to lower con- 
centrations. 

Analysis Neglecting Errors in Concentration 

It is instructive and useful to neglect initially the second and third types of 
errors, which are associated with the concentrations of the polymer solutions, 
and to focus attention on errors in measurement of efflux time. They may be 
considered to a good approximation independent and of constant variance. 

We start with the Huggins equation in the form 

where t is the efflux time of a solution of concentration c and -7 is that of the 
solvent. This equation is conventionally used to find [q] as the y-intercept of 
a straight line drawn through a plot of the quantity on the left-hand side versus 
concentration, for a set of data generated from successive dilutions of one original 
solution. 

It is immediately obvious that since T is constant in any one plot and since the 
errors in t are assumed to be of constant variance, the variance of the left-hand 
quantity varies inversely with the square of the concentration. This results in 
large errors in the ordinates of the points corresponding to low concentrations 
and consequent errors in the estimate of intrinsic viscosity unless some weighting 
of the data is used. 
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One way of avoiding the need for weighting is to rearrange eq. (5 )  as fol- 
lows: 

E E 2  t = 7 + - 7 [q]  + - 7kjy  [qI2 
d d 2  

In recognition of the fact that solutions for viscosity measurements are con- 
veniently prepared by making up one of concentration E and then diluting it with 
successive aliquots of solvent, we express concentration as c = Eld where d = 1,  
2 , .  . . . The pure solvent may be represented by d = 03. 

In Equation 6 the efflux time 7 of the pure solvent is regarded as a parameter 
to be estimated from all the data rather than a quantity measured on the pure 
solvent alone. Treatment of 7 is the same as that of [q] and k H .  Since all 
quantities except d and t are constant Equation 6 represents a parabola when 
t is plotted against l l d .  However, the errors in the ordinates of the measured 
points are now independent and of constant variance. Since in this section we 
are neglecting the errors in measurement of concentration the standard as- 
sumptions of regression analysis16 apply and for statistical purposes we may write 
the model as 

The subscripts i refer to the ith measurement, including those on the pure sol- 
vent. The quantities 7 ,  [q] and k H  are parameters to be estimated from the data. 
The error ti has been added in accordance with our assumptions. 

The fact that there are cross-products among the parameters in Equation 7 
dictates that the problem of estimating them be classified as one where the model 
is nonlinear in the parameters. However, since the least squares estimate of the 
parameters i: unique under these conditions, we may obtain a point estimate 
of [q]  as P2I(PlE) with the model rewritten as 

P 2  P 3  t i = p l + - + - + t i  i =  1,2, ..., N 
di d? 

The circumflex sign refers to the standard least-squares estimate for models 
linear in the parameters. While the parabolic relationship between lldi and 
ti produces some difficulty in graphic estimation of [q] ,  the numerical calculation 
of this proposed estimate is very easy by hand calculator. 

An equivalent but more cumbersome way of obtaining the same estimate of 
[q]  is by nonlinear parameter estimation using eq. (7) as the m ~ d e l . ~ ~ J ~  This 
method does however lead to a good estimate of the variance of the least-squares 
estimate of [q] .  This is the 2,2 element of (X'X)-'u2, where u2 is the variance 
of a single measurement of efflux time, X is the N X 3 matrix the ij element of 
which is 

and 8 is the 3 X 1 vector the elements of which are 7, [q ] ,  and k H .  8 is the least- 
squares estimate of 8. From eq. 7, 
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It is important to recognize that this calculation makes use of the approximation 
of expanding f in a Taylor series in the elements of 6 and truncating it after the 
first degree terms. 

The conventional approach is equivalent to using the model 
E 

=a1+a2-++i  i = 1 , 2 ,  ..., N (ti - to14 
Eto di 

and estimating a1 by linear least squares. This is taken as the least-squares 
estimate of [q]. The subscript i in this case does not include the measurements 
of efflux time of the pure solvent. The symbol to represents the average of 
whatever efflux time measurements are made on the pure solvent. 

The estimate of [q] obtained in this manner is 

[.;I1 = .+ 

where each summation sign represents summation over all observations on so- 
lutions. 

In calculating the variance of this estimate, it must be recognized that there 
is error in to as well as in each of the ti. This can be allowed for to a good ap- 
proximation by the use of the formula for the propagation of variance18: 

where g(u) is a scalar function of the n X 1 vector random variable u, the elements 
of which are mutually independent with variances Var ui, i = 1,2, . . ., n. The 
vector ii is a set of standard values for the elements of u, often the expecta- 
tions. 

Comparison of Conventional and Proposed Methods of Analyzing 
Experiments 

One favorable property of both methods of estimating [q] is that, at least to 
a good approximation, they are unbiased. As more and more measurements of 
viscosity are made, the estimates obtained by both methods converge toward 
the true value. The comparison of the methods then involves only their preci- 
sion, i.e., reproducibility, as measured by the variances of the estimates. 

Table I shows the results of applying both methods to analyze dilution series 
experiments for various (true) values of the dimensionless quantity E[q] which 
is designated x .  An N-trial dilution series experiment is defined as one in which 
a single solution is made up at concentration E and a single measurement of efflux 
time (trial) is made at each of dilutions d = 1,2, . . ., N - 1 and on the pure solvent 
d = a. 

The entries in Table I are the variance factor V and the percent efficiency E ,  
defined by the following equations: 

U2 

T2E2  
Var [;7] = - V 

3 v 3  E=-X 100 
NV 
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where V is a dimensionless measure of the effect of the design and statistical 
analysis of the experiment on the variance of the estimate of [v]. The physical 
conditions of the experiment, such as viscosity of the solvent, maximum con- 
centration of the solution, etc., only affect the quantities 7, E, and n. 

In eq. (15), V3 is V for a three-trial dilution series experiment (d = 1,2,  m )  at 
the same value of x ,  N is the number of trials, and E is a measure of the efficiency 
per trial of the statistical design and analysis of the experiment. It is numerically 
equal to the number of total trials in a set of repeated 3-trial dilution series ex- 
periments needed to produce the same variance of [;7] as 100 repetitions of the 
experiment being considered would produce. 

Several observations may be made on Table I. The first is that the value of 
kH does not affect the comparisons. In all cases kH cancels out of the equations. 
As might be expected, the proposed analysis gives results always better, and often 
considerably better, than the conventional analysis, except in the case of three- 
trial experiments where the results are equal. The reason for the equality is that 
with three-trial experiments both analyses are fitting a model with three pa- 
rameters to three experimental points. The difference between the analyses 
has the effect of only a difference in weighting of the observations: with three 
points the fit is perfect in both analyses. 

A startling consequence of the effect of the improper weighting in the con- 
ventional analysis is that, except for four-trial experiments at very low x ,  the more 
trials made, the poorer the result as judged by V .  With the proposed analysis, 
V decreases as the number of trials increases, indicating better estimation. 

It is also notable that even with the proposed analysis the efficiency per trial 
decreases sharply as the number of trials in a dilution series experiment increases. 
It will be seen later that with optimally designed experiments the opposite is true. 
Consequently, dilution series experiments with more than three trials are always 
inefficient. 

DESIGN OF EXPERIMENTS NEGLECTING ERRORS IN 
CONCENTRATION 

It is relatively easy to establish the highest concentration E to use. For d = 
1, eq. (6) may be written in the form 

R = 1 + x 4- kHX2 (16) 

where R is the ratio of the maximum efflux time to the efflux time for pure sol- 
vent. This quantity is usually recomrnendedlg to be not greater than 2, though 
occasionally higher values are used. If R is chosen to be too high, there is danger 
that the basic mathematical model, eq. (3), will not apply closely enough; if too 
low, the experiment will lack precision. 

The Huggins constant kH for many polymer-solvent systems can be found 
in the literature.20 Having obtained kH and chosen R, x may be found by solving 
eq. (16) and choosing the positive root. The resulting x will rarely exceed 2. 

Sometimes an initial estimate of [17] will be at  hand. If not, an approximation 
may be obtained by various methods?J0.21 The value of E may then be obtained 
by dividing x by [TI. 

An equally important consideration in designing experiments to estimate [q] 
is the precision of the estimate, measured by its variance. In order to establish 
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this, we first define an experiment as consisting of all the trials which on statistical 
analysis lead to one estimate of [q]. 

Probably the most popular criterion22 for the optimal design of experiments 
for models nonlinear in the parameters is [ X’XI . Under conditions that are 
usually reasonably realistic, it is approximately inversely proportional to the 
square root of the (hyper)volume of any particular joint confidence region in 
parameter space. Hence, an experiment which maximizes I X’XI is optimal in 
the sense that it minimizes the volumes of the joint confidence regions. 

In the problem considered here, however, we have no direct interest in 7 and 
kH, and consequently a better way of optimizing our experiments is simply to 
choose that one which minimizes the variance of the estimate of [q]. Strictly, 
we might prefer to minimize the mean squared error of this estimate, but, since 
both the conventional and revised methods of analysis are at least approximately 
unbiased, minimizing the variance is approximately equivalent to minimizing 
the mean squared error. As stated above, the variance of the estimate of [q] using 
the revised analysis is approximately proportional to the 2,2 element of (X’X)-l. 
We have chosen this quantity as the criterion for selecting optimal experiments. 
While it gives results which are somewhat different from those of the IX’Xl 
criterion, it is conceptually simpler. Its use however is slightly more compli- 
cated. 

To produce a general formula for our criterion is cumbersome, but its numerical 
value is easily calculated from its definition in eq. (9). For comparison purposes, 
V as defined in eq. (14) is used in order to eliminate the effect of the physical 
characteristics of the experiment. 

THREE-TRIAL EXPERIMENTS 

Because the three parameters 7, kH, and [q] must always be estimated, even 
if only [q] is of direct interest, every experiment must consist of at  least one trial 
at  each of at  least three different concentrations. A simple special case is that 
where one viscosity measurement is made at  concentration E, corresponding to 
d = 1, and one on the pure solvent, corresponding to d = a. In this case it is easy 
to derive an expression for V as a function of x and d ,  the dilution used at  the 
third trial. When this expression is differentiated with respect to d and equated 
to zero, the following relation between x and the optimal third dilution a is ob- 
tained. It is easily verified that a does indeed produce a minimum in V: 

Table I1 shows V and E for the optimal three-trial experiments for various values 
of x ,  the optimal values a having been obtained by using eq. (17). As previously, 
each E in Table 1% shows the efficiency of the experiment being considered rel- 
ative to the d = 1,2, 

It is evident that the d = 1, a, a experiments are always better than the d = 
1,2, experiments at  the same value of x ,  but by very little. However, the latter 
are much more convenient in practice because of their integer dilutions. The 
1,2, 03 experiments may be considered the practical optima among three-trial 
experiments. 

With four- five-, and six-trial experiments, the situation is similar: the truly 
optimal experiments do not have integer dilutions, but there always exist ex- 

experiment with the same value of x .  
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periments with dilutions of 1,2, and 03 which are nearly as good. The practical 
optima and their V and E values are also shown in Table 11. The symbol Nj 
indicates the number of trials at  dilution d = j .  Note that for experiments with 
more than three trials the best practical experiment depends to some extent on 
the value of x. 

An interesting and important property of all these best practical experiments 
is that they provide the same point estimate for [v] whether they are analyzed 
by the conventional or the revised method. This is the consequence of the fact 
that in each case three parameters are being fitted by data observed at only three 
concentrations. The common estimate is given in every case by 

where t j  is the arithmetic average of all of the efflux times measured at  dilution 
d = j. The variance of this estimate is given by eq. (14) with 

1 16 ( 3 + ~ ) ~  v=-+-+- 
N1 N2 Nm 

Equation (19) was developed by the use of eq. (13). 
The values of E in Table I1 show that, for an experiment which is optimal for 

its number of trials, the effectiveness per trial is greater the larger the number 
of trials. This holds in fact for any number of trials. 

If the restriction that N1, N z ,  and N ,  must be integers is relaxed and if V from 
eq. (19) is minimized with respect to N1, N P ,  and N ,  subject to the constraint 
that their sum is a constant N ,  it is found that N1, N2, and N ,  must be in pro- 
portion to 1,4,  and 3 + x. Substituting these numbers into eq. (19) gives 

V = (8 + X ) ~ / N  (20) 
Of course, it is impossible in practice for the number of trials to have other than 

integer values. However, the situation described in the last paragraph is ap- 
proached as N becomes large. Thus, V in eq. (20) may be regarded as the limiting 
value for an indefinitely large number of trials. This limit of V and the corre- 
sponding value of E are shown in the columns for N-trial experiments in Table 
I1 for each value of x listed. The optimal number of trials a t  dilution j is found 
by multiplying the optimal proportion Nj/N from Table I1 by N and rounding 
to the nearest integer. 

It is notable that the experiments which are practical optima for n = 3,4,5,  
and 6 as shown in Table I1 are those where N1, N P ,  and N ,  have integer values 
as close as possible to the proportions 1,4, and 3 + x. Since these proportions 
cannot be reached exactly, V is greater than that given by eq. (20). 

Under the assumption of negligible errors in concentration, it will be of no value 
to make more than one original solution: the desired number of measurements 
is made by repetition at  each dilution, including d = a. Since ordinarily it re- 
quires much less effort to make a measurement of efflux time than to make up 
a new solution, the recommended experiments will be efficient with respect to 
effort expended. 

If it is desired to make more than a total of six trials, they should be distributed 
as closely as possible in the optimal proportions. The exact value of V can be 
calculated for any experiment which involves only dilutions of 1,2, and by the 
use of eq. (19). 
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DESIGN AND ANALYSIS WHEN THERE ARE ERRORS IN 
CONCENTRATION 

It may happen under some conditions that there will be errors in the mea- 
surement of the concentrations of the solutions with sufficient magnitude that 
they will have a perceptible effect on the estimates of [q] .  We make the as- 
sumption that all errors in concentration are caused by imperfect knowledge of 
the amount of solute present in the solutions; i.e., we assume dilution errors to 
be negligible. 

It can be shown first that eq. (18) still provides an efficient point estimate of 
[77] based on data obtained a t  d = 1, 2, and a. Secondly, using eq. (13), the 
variance of this estimate is found to be given by eq. (14) where now 

1 16 ( 3 + x l 2 + q 2 x 2  v=-+-+---- - 
rnl rn2 N m  r 

This is an extension of eq. (19) to allow for r make-ups of solution of concentration 
c'. The efflux time of each of these is measured nl times: they are then each 
diluted with one aliquot of solvent, and the efflux time for each diluted solution 
is measured n2 times. As before, there are N, efflux time measurements on the 
pure solvent. The quantity q is the ratio of the coefficient of variation of the 
measurement of concentration of the made-up solution to that of the measure- 
ment of efflux time of the pure solvent; i.e., 

(S. D. F) /F 
c/r q =  

If we minimize the right-hand side of eq. (21) under the condition that the total 
number of trials is constant, we find that the number of measurements a t  each 
dilution, rnl, rn2, and N,, should be as close as possible to the proportions 1,4, 
and 3 + x .  This is the same result as when there is no error in the measurement 
of F. 

As before, the truly optimal experiments require trials a t  dilutions d = 1, (2, 
and 0, where (2 is a noninteger close to 2. The loss of efficiency in using d = 1, 
2, and a, however, is always very small. 

The required number of make-ups of solution can always be found by mini- 
mizing V in eq. (21) with respect to r. For example, the most important practical 
decision involves six-trial experiments. Application of eq. (21) shows that if x 
is less than 1, the optimal experiment is that shown in Table 11, d = 1,2,2,2, a, 
a, with only one make-up of solution for q2 less than 13/(3x2), and d = 1,2, a 
for each of two make-ups of solution for greater q2. If x is between 1 and 2, the 
optimal experiment is d = 1,2,2, a, a, a, with only one make-up of solution for 
q2 less than (x2 + 6x + 6)/(3x2), and d = 1 , 2 , a  for each of two make-ups if q2 
is greater. 

It is interesting that if r and the numbers of trials are allowed to be continuous 
variables, there is no optimal r to minimize V with the total number of trials held 
constant. This situation is approached when the number of trials is large. In 
that case, the larger the value of r, the better. A minimum in V does occur as 
described when r and the number of trials are restricted to small integer 
values. 

If however a penalty is placed on make-up of solutions, a minimum value of 
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V exists under all conditions. More exactly, if r, nl, n2, and Nm are chosen so 
as to minimize V under the condition that 

(23) 

is held constant, a minimum in V occurs where rnl, rn2, and N ,  are in the pro- 
portions 1,4, and 3 + x as previously, but where 

(24) 

In eqs. (23) and (24), r, nl, n2, and Nm are considered to be continuous vari- 
ables, and it requires k times as much effort to make up a new solution as it does 
to measure a single efflux time. If the numbers of trials are constrained to be 
small integers, the optimal values of rnl, rn2, and N ,  will be integers with values 
close to the given proportions and with r close to that given by eq. (24). 

W = rnl + rn2 + N ,  + kr 

r = qxN/(8 + x)k1I2  

Summary of Procedure 

1. The maximum concentration C is chosen by the use of eq. (16). Ordinarily, 
R will have the value 2, and k H ,  the Huggins constant, may be found from the 
literature. The equation is solved for x ,  which, when divided by a guessed or 
predetermined value for the intrinsic viscosity, yields the design value for C. 

2. All experiments which may be considered practical optima involve mea- 
surements of efflux time of solutions having dilutions only of l, 2, and a, i.e., 
concentrations of C, E/2, and 0. 

3. If the error in concentration is small, the number of efflux times to measure 
at  each dilution is read from Table 11. The total number of trials and conse- 
quently N1, N2, and N,,  are chosen according to the value of x and the desired 
V. For this, V is obtained by substituting the values of 6, C, and T expected in 
the measurement along with the desired variance of the estimate of [17] into eq. 
(14). 

4. The estimated value of the intrinsic viscosity is obtained by substituting 
the experimental results into eq. (18). 

5. If the error in concentration of solutions is large, the optimal experiment 
is found by minimizing V in eq. (21). In many practical cases the choice of op- 
timal experiment will be between (a) that shown in Table I1 for six-trial experi- 
ments with only one make-up of solutions and (b) repetitions of the three-trial 
experiment on each of two make-ups of solution. The criterion for choosing 
between these is described in the text. After the experiment is performed, the 
intrinsic viscosity is estimated by using eq. (18) as previously described. 

Notation 

Latin Letters 

c concentration 
P 
d 
d optimal dilution 
15 
f 

maximum concentration of solution in a set of measurements 
number of aliquots of solvent added to original solution 

efficiency, defined by eq. (15) 
a mathematical function in eq. (10) 
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a mathematical function in eq. (13) 
a numbering index, subscript 
a constant in eq. (1) 
a constant; in eqs. (23) and (24), the cost of solution make-up 
the Huggins constant, eq. (3) 
a constant in eq. (4) 
the total number of trials 
the number of trials at  dilution j 
the number of trials a t  dilution j for each make-up of solution 
a measure of error in concentration, defined by eq. (22) 
efflux time ratio, eq. (16) 
number of make-ups of solution in an experiment 
standard deviation 
efflux time 
measured efflux time on solvent, eq. (11) 
average of all efflux times measured a t  dilution j 
a vector of random variables 
variance factor, defined by eq. (14) 
variance factor for a three-trial experiment with d = 1,2, m 

the cost of experimentation; see eq. (23) 
matrix defined by eq. (9) 
determinant of the matrix product of the transpose of X by X 
5 [ 9 ] ,  dimensionless intrinsic viscosity 

Greek Letters 

parameters in eq. (111, j = 1 ,2 ,3  
parameters in Equation 8, j = 1 ,2 ,3  
error in measurement of efflux time 
relative viscosity 
specific viscosity 
intrinsic viscosity 
parameter vector; see eq. (9) 
least-squares estimate of B 
standard deviation of a measurement of efflux time 
true value of efflux time of solvent 
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